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RELATIVISTIC CHARGED FLUID FLOW 

III. GENERALIZED HAMILTON-JACOB1 EQUATION 

Lawrence A. Schmid 
Goddard Space Flight Center 

Greenbelt, Maryland 

ABSTRACT 

When the forces resulting from viscosity and heat injection a re  described 
in terms of the thermal 4-potential introduced in the preceding paper, it is pos- 
sible to derive a scalar equation of motion that has the form of a generalized 
Hamilton-Jacobi equation. This equation involves not only the electromagnetic 
and gravitational fields, as  in the single-particle case, but also the thermody- 

namic properties of the fluid a s  characterized by the specific enthalpy, whose 

role is analogous to that of the gravitational potential, and by the thermal 4- 

potential, whose dynamical effects a r e  analogous to those of the electromagnetic 

4 -potential. 

The formalism employs a generalization of the canonical particle momentum 

that includes the thermal 4-potential as well as the electromagnetic 4-potential. 

This generalized canonical momentum can be represented in terms of three 

scalar functions by means of a generalized Clebsch Transformation. One of 

these scalar functions is Hamilton's Characteristic Function, which is the m- 
known in the generalized Hamilton-Jacobi equation. The other two functions, 

which a r e  called the vorticity invariants, determine the intrinsic vorticity of the 

fluid, which is defined as the curl of the generalized canonical momentum and 

which, according to the generalized Larmor Theorem derived in the preceding 
paper, is to be associated with that part of the fluid rotation that is a residual of 
the initial conditions of the fluid. The vorticity invariants a r e  both constants of 
the fluid motion. 

In the case of adiabatic flow, i t  is possible to express the thermal 4-potential 
in terms of the specific entropy and the temperature integral, which is defined 
as the scalar function whose substantial time derivative is equal to the temper- 

ature. This allows a simple interpretation of the generalized canonical momen- 
tum in terms of the heat reservoir model introduced in the first paper of this 

ser ies .  
iii 



RELATIVISTIC CHARGED FLUID FLOW 

111. GENERALIZED HAMILTON-JACOB1 EQUATION 

I. INTRODUCTION 

In the preceding paper,* henceforth referred to as 11, it was shown that in 

the relativistic dynamics of a charged fluid, a fundamental role is played by the 

intrinsic vorticity tensor 2 pu jk  where p is the variable (but relativistically 

invariant) particle mass  defined in terms of the constant particle mass  m ,  the 

gravitational potential G , and the specific enthalpy h by the relation 

p m (1 t G/c2 t h/c2). (1.1) 

From the generalized Larmor Theorem that was derived in 11, it was shown that 

the antisymmetric tensor ujk may be regarded as describing the intrinsic rota- 

tion of the fluid, i.e. that part of the total fluid rotation R j k  that is not produced 

by the action of external fields, but rather is to be associated with the starting 

conditions of the fluid at  some instant of past time. 

in 
The physical importance of the intrinsic vorticity tensor 2 pujk l i d t h e  fact 

that the 3-vector given by its space-space components is frozen into the fluid and 

carried along with it. This tensor is defined in terms of the generalized canoni- 

cal  momentum hj by the relation 

*GSFC X-641-65-421 
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where bJ (bo, $) is defined by 

o r  

(1.3a) 

(1.3b) 

( 1 . 3 ~ )  

where a j  (ao, a ) is a thei-lxlal 4-potential that is analogous in its dynamical 

effects to the electromagnetic 4-potential A j  = (Ao,  A) , except that the particle 

mass m rather than the particle charge q plays the role of coupling constant. 

As in the preceding paper, the local fluid velocity is designated by V J  E r (c, v) 

where c is the speed of light and r E (1 - v2/c2) 

of the 3-velocity v. The mass p* = r p  is the mass as  seen in the observer's 

frame of reference, as opposed to the invariant mass  p which is the particle 

mass  in the fluid rest-frame. 

where v is the magnitude 

The equation of motion of the thermal 4-potential a j  is given by (4.9) of II: 

where T and s a re  respectively the temperature and specific entropy in the 

fluid rest-frame, 7 ~ j  is the energy-momentum per particle that is injected into 

the fluid because of heat absorption, and 3 J is the viscous 4-force. 

It was shown in the preceding paper that o j k  must be orthogonal to v k ,  

that is 

, J k V k  = 0. 

2 
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Contraction of (1.2) with vk yields Euler's equation: 

d ( p v j ) / d T = m a j G  t m ( a j h - T a j s )  t (q/c)Fjkvk t v j  + T I  (1.6) 

where 

is the electromagnetic field tensor. It was pointed out in (5.2) of the first paper 

of this series* (henceforth referred to as I) that 

where p is the invariant particle (not mass) density and P is the partial pres- 

sure  of the charged fluid. Substitution of (1.8) into (1.6) yields the more usual 

form of Euler's equation. The form given in (1.6), however, has the advantage 

that i t  does not explicitly involve p,  and so has the form of a single-particle 

equation. Once v j  has been found by solving (1.6), p can be found from the 

continuity equation: 

If we regard the fields c and F J k  that appear in (1.6) as given space-time 

functions, then the independent variables of the problem may be taken to be the 

three components of the 3-velocity v , the particle density p ,  the enthalpy h ,  and 

the entropy s - a total of six degrees of freedom. (From the thermodynamic 

properties of the fluid the temperature T is regarded'as a known function of the 

variables p ,  h, and s ,  and from the physical nature of the heat injection and 

GSFC X-641-65-380 * 
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viscosity T J  and 7 1 a r e  regarded as known functions of p , h ,  s , and v . )  The 

corresponding six equations necessary for the solution a re  the three independent 

space-like components of (1.6) (the time-like component being derivable from 

these), the continuity equation, the thermodynamic equation of state of the fluid 

in terms of p, h, and s ,  and an equation that specifies ds/d.r in terms of the 

six independent variables. 

We could, however, use (1.4) to eliminate s, ~ j ,  and ~j from (1.6): 

d ( p v J ) / d T  = mi31 (C t h) t (q/c) Fjk vk t (m/c) f J k  vk, (1.10) 

(1.11) 

where 
f j k  = aj a k  - a k  aj 

is a thermal field that is analogous in its dynamical effects to F J k.  This thermal 

field is specified in terms of the 4-potential a j whose "field equations" a re  given 

by (1.4). Our independent variables could then be taken to be the three components 

of v ,  the density p ,  the enthalpy h ,  and the three significant degrees of freedom 

of aj. (One of the four degrees of freedom of aj corresponds to the specifica- 

tion of i ts  gauge, which has no physical significance.) Thus we are  now involved 

with a total of eight independent variables (v, p ,  h ,  and a). The corresponding 

eight equations are the three independent space-like components of ( l . l O ) ,  the 

continuity equation, the thermodynamic equation of state (which now involves 

a and v as wel l  as p and h ) ,  and the three space-like components of (1.4) (the 

time-like component simply specifying the gauge of aj ). 

Comparing these two approaches, we see  that the second one, which utilizes 

a ,  has the disadvantage that i t  adds two extra variables to the problem. This 
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disadvantage can be removed, however, by taking the fluid equation of motion to 

be a generalized Hamilton-Jacobi equation, rather than the Euler equation. The 

velocity v is then replaced by the scalar Characteristic Function S, so we again 

have a total of only six variables (S, P ,  h ,  and a), even though we continue to use 

a. The desired Hamilton-Jacobi equation is derived in Section 11. 

In Section 111 it is shown that it is always possible to describe the intrinsic 

vorticity 2 pujk in terms of two scalars M and 4, called vorticity invariants, 

that a r e  constants of the fluid motion. The introduction of these two scalars 

leads to a generalized Clebsch Transformation according to which the general- 

ized canonical momentum bJ is expressed in terms of three scalar functions, 

the Characteristic Function S and the vorticity invariants M and 4. 

In Section IV the foregoing results are specialized to the case of adiabatic 

(but not necessarily isentropic) flow of an inviscid charged fluid. In this case 

it is possible to express the thermal 4-potential aj in terms of two scalar func- 

tions, one of which is the specific entropy s. The other is a temperature integral 

3 whose substantial time derivative d3/dT is just the local fluid temperature T .  

If c 3’ 3 is identified with the temperature 4-vector Ti of a heat reservoir 

which coexists in space with the fluid but which, in the adiabatic case, does not 

interact with it, then it can be shown that the entropy-dependent contribution to 

the generalized canonical momentum bj may be interpreted in terms of this 

heat reservoir. Because the temperature 4-vector TA of this reservoir is ex- 

pressible as the gradient of the scalar c 3 ,  it is called a scalar reservoir. 

5 



The general problem of nonadiabatic flow discussed in Section II is formu- 

lated in terms of the six independent variables S , p,  h ,  and a, the last three of 

which a r e  the space-like components of the 4-vector a ] .  In Section IV, however, 

i t  is shown that the adiabatic case admits a scalar formulation in that i t  can be 

formulated in terms of the variables S, p, 3, s M y  and 4, all six of which a re  

scalar functions. 

In Section V it is shown that, at the expense of increasing the number of in- 

dependent variables, a scalar formulation is also possible even in the most 

general case of nonadiabatic flow. This formulation can be given a natural in- 

terpretation in terms of four imaginary scalar hear reservoirs that exchange 

heat with the fluid. An alternative form of this scalar formulation is also given 

that introduces into the formalism three constants of motion that a r e  related to 

viscosity and heat exchange with the fluid. 

11. GENERALIZED HAMILTON-JACOB1 EQUATION 

From (1.2) i t  is evident that 2,uaJkis expressible as the curl of a 4-vectory 

which we shall designate ( m k )  b j. It is also evident that this 4-vector must 

differ from -bj by no more than the gradient of some scalar function. Thus 

where 

where s is an as ye t  unspecified scalar function. Using (1.3) we have 

6 
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or  

where 
V S = p*v t (dc) A t (mk) a, 

~j = (ao, a )  a' t bj. 

(2 .3~)  

(2.4) 

Notation introduced in the preceding two papers has been used in writing (2.3b) 

and (2.3~) .  In particular 8 

p* = r p ;  and AJ = (Ao, A ) .  

(a/c a t ,  -0); v j  r ( C , v )  where r = (1 - ~ 2 / ~ 2 ) ' ~ ' ~ ;  

Contracting the curl of u j  with vk , and using (1.4), (1.5), and (2.1), we ar- 

rive at the equation of motion of uj : 

d uj /dr  I vk a' uk + (c/m) (m T 3' s - 7 ~ j  - q j ) .  (2.5) 

This has exactly the same form as the equation of motion of a] given in (1.4). 

From (1.5) and (2.1) i t  follows that the equation of motion of bj is 

Thus from (2.4) and the forms of the equations of motion of uj,  aj , and bj , i t  

follows that aj may be regarded as the "drivenft part of uj , i.e. the inhomo- 

geneous part of the solution of (2.5), that responds to the "driving force" 

(c / fn)(rnTaj - 7i-j- qj), whereas bJ is the homogeneous part of the solution which 

is insensitive to the driving force. According to (2.1), it is this homogeneous 

par t  of ,j whose curl is the intrinsic vorticity 2 pujk. Thus the description of 

the intrinsic vorticity and the dynamical effects of the viscosity and the entropy 

4-gradient are combined in the single 4-potential uj , which will be called the 
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fluid 4-potential to distinguish it from the thermal 4-potential aj , and from bj , 

which will be called the vorticity 4-potential. 

In this way we can give a physical significance to the homogeneous part of 

the solution of (2.5), which is not uniquely determined by (2.5) alone, but is also 

dependent upon the initial conditions of the fluid specified at some past instant 

of time. The fact that this homogeneous part of uJ determines the intrinsic 

vorticity 2 p m J k  is consistent with the fact, emphasized in the preceding paper, 

that in the generalized Larmor Theorem w J k  is that part of the fluid rotation 

that is determined by the initial conditions of the fluid. This dependence on 

initial conditions will be made very transparent in the next section when it will 

be shown that 2 p w j k  can be expressed in terms of two scalar functions that are 

constants of the fluid motion. 

It is our objective to arrive a t  a scalar fluid equation of motion which does 

not involve VI, and which has the form of a generalized Hamilton-Jacobi equa- 

tion. Such an equation follows directly from (2.3a) and the velocity normaliza- 

tion condition 

v. vj = c2. (2.7) 
J 

Taking the terms (q/c) Aj and (m/c) uj to the left side of (2.3a) and equating 

the norms of both sides, we arrive at the desired equation: 

(aj s t qA./c t m a . / c )  (8 s t qAj/c t muj /c )  = ( p ~ ) ~ .  (2.8) 
J J 

An alternative form of this equation that makes the effect of uj more ex- 

plicit can be derived by taking only (q/c) Aj to the left side of (2.3a) and equating 

norms of both sides: 

8 



(a, S t qAj/c) (a’ S +qAj/c) = ( P C ) ~  t (m/c)2 a, uj t 2 (pm/c) v, uj. (2.9) 

The gauge indeterminacy of uj may be used to simplify this equation by choos- 

ing the gauge so that the condition 

v .  2, = 0 
J 

(2.10a) 

is satisfied, which implies that 

2, = [(v ’ 2 / c), 2’3. (2.10b) 

This choice of gauge (which is indicated by the overhead tilde) will be called the 

“space-like gauge.’’ Given any a’, the corresponding 2’ is 

where $J is the solution of the scalar equation 

d $ J / d r  = - v. J uj. 

Note that from (2.10b) it follows that 

fi .-u. a. U J  = [(v * 2)2/c2 - 2 * 21 - < 0. 
J 

That is, the norm of 2j is always negative. 

(2.11a) 

(2. l l b )  

(2.12) 

When we choose the space-like gauge for a’, the Hamilton-Jacobi equation 

in  the form (2.9) becomes 

(a, % t qAj/c) (ai t qAj/c) = ( P C ) ~  t (m/c)”;, 2 ,  @.i3 j 
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where the tilde over the S gives explicit recognition to the fact that the Charac- 

teristic Function S which corresponds to zj is in general different from the S 

which corresponds to a’. 

* 

From (2.12) it is evident that the effect of 2J is to diminish the right side 

of (2.13), regardless of the nature of the nonisentropy, viscosity, or  intrinsic 

vorticity described by 2J. 

As a preliminary to finding the nonrelativistic limit of (2.8), we introduce 

the Principal Function defined as 

(2.14) 

where xJ is the position 4-vector and VJ is an arbitrary constant 4-velocity 

which, i f  the system under study is closed and so conserves its total 4-momentumY 

may be identified with the velocity of the center of mass of the system. From 

(2.3a) and (2.14) it follows that 

- a j  h = ( p v j  - m V j )  t (q/c) A j  t (m/c) a j  (2.15) 

which, together with the normalization condition Vj VJ = ~ 2 ,  yields the following 

form of the Hamilton-Jacobi equation: 

Vj 3, - (a, h t q A j  /c t m a j / c )  ( a j  h + q A j / c  t m a j / c )  / 2 m  

(2.16) 

t q A j  Vj/c t m a j  Vj/c t m(C t h) [ l  t (C t h)/2c21 = 0. 

Now we note that in the special frame of reference for which 

vj = (c, 0, 0, 0) 

10 
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(2.16) may be written as follows: 

a A / a t  t ( V B  t qA/c t m a / c )  ( V B  t qA/c t m a / c ) / 2 m  
(2.18) 

t q A o  t m u o  t m ( C  t h) = [(aA/'at t q A o  t m a o )  - ( m G  t m h ) 2 1 / 2 m c Z .  

From (1.1) and the time-like component of (2.15) for the frame in which V j  has 

the form (2.17), we find 

t q A o  t m u o )  - (mG t m h ) 2 1 / 2 m c 2  

(2.19) 

2 (112)  m v 2  [(1/2)rnv2 t 2 (mG t m h )  l / 2 m c 2 .  

Because this is obviously zero in the nonrelativistic limit, the right side of (2.18) 

vanishes in this limit, and we are left with an equation having the form of the 

familiar nonrelativistic single-particle Hamilton-Jacobi equation, except for the 

additional terms involving h, uo, and a ,  which play roles analogous to G ,  A', and 

A respectively. 

111. GENERALIZED CLEBSCH TRANSFORMATION 

It was remarked in  the preceding section that the vorticity 4-vector b' must 

be regarded as a function of the initial conditions of the fluid, and that this could 

be made most evident by showing that bj can be expressed, quite generally, in 

terms cf turn scalar functions that are constants of the fluid motion. Thus the 

specification of these scalars everywhere at some instant of past time suffices 

to determine them, and hence b', for all time. 

11 



As a preliminary to proving this statement, we first recall that in (4.12) of 

I1 it was pointed out that the orthogonality condition w j k  vk = 0 requires that w J k  

have the following form: 

where (3.lb) constitutes the definition of the 3-vector w.  It was further pointed 

out in (4.18) of I1 that a necessary consequence of the requirement that w J k  have 

the form given in (3.1), and the requirement that 2 p w j k  be expressible as the 

curl of a 4-vector (cf. (2.1) above), is that the 3-vector intrinsic vorticity 2p*o 

must satisfy the following two equations: 

v * (2p*o) = 0;  (3.2a) 

a ( 2 p * w ) / a t  = v x  [ v x  (2p*o)I. (3.2b) 

For the moment let us confine ourselves to a fixed frame of reference, and let 

us assume that 2p*o is continuously differentiable. It is well known' that such 

a vector, which by (3.2a) must be solenoidal, can always be expressed as follows 

in terms of two scalar (in the three-dimensional sense) functions, which we shall 

denote M and 4: 

2 p * w  = (VM) x (Vq5). (3.3) 

For given 2p*0, this equation which follows from (3.2a), may be regarded as a 

condition on the spatial dependence of M and 4. Eq. (3.2b) represents a condi- 

tion on both the spatial and time dependence of M and 4. This condition is equiv- 

alent to the following requirement: 

12 
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That (3.4) is equivalent to (3.2b) is easily verified by taking the curl of (3.4) and 

using (3.3). The gradient of an arbitrary scalar function could have been added 

to the right side of (3.4) without affecting its equivalence to (3.2b), but because 

this scalar function is arbitrary, we are free to equate it to zero with no loss of 

generality. 

4 .  
We have shown that, because 2 p w Jkis the curl of a 4-vector, 2 p*w must be 

expressible in terms of two scalars M and 4 that satisfy the condition (3.4). So 

far we have restricted ourselves to a single frame of reference, and have said 

nothing about the Lorentz transformation properties of 2 P * W .  The fact that this 

3-vector is the space-space part  of an antisymmetric world tensor represents an 

additional restriction on the space-time dependence of 2 p * w ,  and hence of M and 

4. This requirement on M and 4 turns out to be just that they both be scalars 

not only in the three-dimensional sense, but also in the four-dimensional sense 

as well. That is, they must be Lorentz invariant. The validity of this statement 

follows from the fact that, making use of (3.1), we can write the six component 

equations of (3.3) and (3.4) in the following way, which has the formal appearance 

of a tensor equation: 

(3.5) 

If now we require that M and 4 be Lorentz invariant, then the right side of (3.5) 

is a genuine world tensor, and consequently so is 2 P w j k  on the left side, which 

guarantees that 2 p*o has the correct Lorentz transformation properties. 

13 



There is a more abstract, but much more direct, way of arriving at (3.5). 

Referring to (4.18) of 11, we note that the four component equations of (3.2) can 

be written in the following form: 

(3.6) 

The tensor 2 pw j has six degrees of freedom (before we impose the orthogonality 

requirement (1.5)). But (3.6), which is equivalent to the four component equations 

of (3.2), removes four of these degrees of freedom. Thus any antisymmetric 

world-tensor with two degrees of freedom that automatically satisfies (3.6) is a 

perfectly acceptable and general way of representing 2 puJk.  It is obvious that 

(3.5) satisfies these requirements, which is all the justification it needs. 

Having derived (3.5) from the requirement that 2 pu jk  be the curl of a 4- 

vector, we may now impose the orthogonality condition (1.5) in order to derive 

the equations of motion of M and 4.  Contracting (3.5) with vk and using (1.5) 

we find 

Constructing the four-dimensional cross-product of this equation with 2 k M  and 

using (3.5),  we have 

If 2pu.ojk = 0, then from (3.5) it is evident that M and 6 may be set equal to con- 

stants, and s o  may be considered constants of the motion. h the non-trivial case 

in which 2 pujk # 0 ,  it follows from (3.8) that 

dM/dr = 0, (3.9) 
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which says that M is a constant of motion. Similarly, by constructing the cross- 

product of (3.7) with ak c$~ we arrive at the conclusion that 

d $ / d r  = 0. (3.10) 

Thus both M and 4 a r e  constants of motion. 

Comparing (2.1) with (3.5), we arrive at  the following expression for the 

vorticity 4-vector bj in terms of the vorticity invariants M and 4:  

(m/c)bJ = M a j  4, (3.11) 

where we note that the gradient of an arbitrary scalar function might have been 

added to the right side of (3.11)7 but because only the curl of bj is of physical 

significance, this scalar function has been set  equal to zero, with no loss of 

generality. It is easily verified that the equations (3.9)-(3.11) guarantee that the 

equation of motion for bJ given in (2.6) is automatically ysW&ed. 
r l .  sal '5  +, &ii, 

Substituting (3.11) into (2.2), we arrive at the generalized Clebsch 

Transformation: 

o r  

cbo  - ( aS /a t  t Ma+/a t ) ,  (3.12b) 

= OS t M V 4 ,  (3.12~) 

where the definition of the generalized canonical momentum bj = (bo, b) is 

given by (1.3). Unlike the familiar form2 of the Clebsch Transformation, which 

expresses the fluid velocity in t e rms  of three scalars,  the generalized trans- 

formation re fers  to the generalized canonical momentum. 

15 



An important special case ar ises  if  2 p*w = 0 . From (3.2b) i t  is evident that, 

i f  this condition holds everywhere in 3-space at  any instant of time, then i t  will 

propagate itself for all time. From (3.3) or (3.5), it is evident that in terms of 

M and 4 this zero-vorticity case corresponds to one of the following conditions: 

Either one or both of the scalars M and 4 is everywhere constant for all time, 

or  else M can be expressed as a function of 4. When any of these conditions 

holds, i t  is evident that the term - M a l  + in (3.12a) can be expressed as the gra- 

dient of a scalar function, which function could then be absorbed into the func- 

tion S .  Thus the zero-vorticity case can be characterized by the condition 

(Potential Flow) fJ = - a j  s, (3.13) 

and so will be referred to as generalized potential flow. It is the self-perpetu- 

ating feature of this special type of flow that makes i t  important. This self- 

perpetuation is intuitively obvious in terms of M and +: Because these a r e  con- 

stant along every particle trajectory, i f  either of them is the same for - all 

trajectories at any instant of time, then i t  must be the same for all time. The 

formal expression of this remark for the case of M ,  for example, follows from 

(3.9) which can be written 

a M / a t  = -,v . V M .  (3.14) 

It is obvious that i f  V M =  0 , then aM/a t = 0 and the spatial uniformity of M 

perpetuates itself for all time. 

Our intuitive feeling for the physical meaning of M and + can be helped by 

noting that, because w is an angular velocity, it follows from (3.3) that the 

product M +  must have the dimensions of angular momentum. With no loss of 
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generality we may assert  that @ is dimensionless and that M has the dimensions 

of angular momentum. Thus M may be regarded as an angular momentum (per 

particle) - in some way related to the intrinsic vorticity - which is conserved 

along the particle trajectory. We may think of 4 as the initial value at t = 0 of 

one of the particle coordinates (in dimensionless form), whose memory is re- 

tained by the particle for all time. 

A simple example that illustrates these points is provided by the case of 

nonrelativistic rigid rotation of the fluid in the absence of any external fields. 

The rotation is thus characterized by a single angular velocity vector of mag- 

nitude R that is everywhere the same. It is easily shown3 that in this case M 

turns out to be equal to the angular momentum of a particle about the rotation 

axis, i.e. M = m R  r where r is the particle distance from the axis. 4 turns out 

to be the value yo of the particle's azimuthal coordinate at t = 0 , i.e. 4 = 'p - R t ,  

where the azimuthal angle 'p is given by 'p = 0 t t y o .  

If there were a uniform magnetic field parallel to the rotation axis, then the 

expression for 

where R, is the Larmor rotation velocity produced by the magnetic field, and 

o = R - R, is just the magnitude of the intrinsic angular velocity. Thus M would 

be that part of the total particle angular momentum that is produced by the in- 

trinsic angular velocity w. 

would remain unchanged, but M would become M =m(R-R,) r2 = Ur2 

Note that in these examples the existence of a nonzero intrinsic angular 

velocity is associated with an M that is not spatiaiiy uniform. This is iii fact 

always the case because, if VM = 0 ,  then from (3.3) it follows that o = 0 and, 

17 



according to (3.14), once V M = 0 ,  this condition will perpetuate itself. It is in- 

teresting to speculate 

turbulence, that would tend to make M uniform even i f  this were not originally 

the case. The argument goes as  follows: Inasmuch as M is a constant of mo- 

tion, it may be regarded as an intrinsic property of every small sample of the 

fluid, which is carried along with the fluid and characterizes i t  for all time. 

Because turbulence tends to mix the fluid, i t  is reasonable to expect that i t  might 

produce a diffusion of the nonuniformities in M , with the result that M would tend 

to become uniform throughout the fluid (to the extent that it is not impeded from 

doing this by imposed constraints and boundary conditions3 ). 

that there might exist a natural mechanism, namely 

Because uniform M implies the existence of generalized potential flow as  

defined by (3.13), the above speculation suggests that potential flow may be en- 

countered very frequently in situations characterized by strong turbulence, i.e. 

by a very large Reynolds number. 

IV. ADIABATIC FLOW 

In the preceding section it has been shown that it is always possible to ex- 

press  the vorticity 4-potential bj in terms of two scalar functions. It will now 

be shown that, in the case of adiabatic flow, it is possible to express the thermal 

4-potential aj in terms of two scalar functions, one of which is the specific 

entropy s .  

Adiabatic flow is characterized by the fulfillment of the following three 

conditions: 

S E d s / d T  = 0; (4.la) 
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T I  = 0; (4.lb) 

qj = 0. (4 .1~)  

From the physical point of view these conditions are not independent, because 

the first implies the other two. Thus, i f  its local entropy cannot zhznge, the 

fluid cannot (reversibly) gain o r  lose heat, which implies that 77’ = 0. A s  to 

( 4 . 1 ~ ) ~  which says that the viscous force must be zero, this follows from the ob- 

servation that viscosity always causes entropy generation. 

From the formal point of view, however, i f  we are not given the functional 

dependence of nTTj and ,I] on 6 ,  the conditions (4.lb) and ( 4 . 1 ~ )  must be regarded 

as independent of (4.la). Such a functional relation for nj was in fact given in 

(5.7) of I: 

T I  = r n T i i / c  (4.2) 

where T i  is the temperature 4-vector of the heat reservoir from which heat is 

reversibly transferred to the fluid. The formal condition guaranteeing reversi- 

bility of the transfer was given in (4.27a) of I: 

T = v .  I TA/c. (4.3) 

(Following the notation change noted in 11, we designate the fluid temperature in 

the fluid rest-frame by T rather than by T as in I.) It is obvious that, given 

(4.2), the condition (4.lb) ioiiows from (;.;a). Lazkicgazexprecsinn for 

to the one f o r  d given in (4.2), we must regard ( 4 . 1 ~ )  as being formally independ- 

ent of (4.la). In any case, we assume that all three conditions of(4.1) are fulfilled. 

0 

analogous 
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Thus (1.4) may be written in the form 

The solution of this equation can be expressed directly in terms of s and the 

temperature integral !3 which is defined by the relation 

It is easily verified that when (4.la) holds, either of the following expressions 

for aj satisfies (4.4): 

which proves our assertion that for adiabatic flow i t  is possible to express aj 

in terms of two scalar functions, one of which is s. 

Note that, because these two expressions for the thermal 4-potential differ 

only by the gradient of c sg, they are actually the same 4-potential with different 

choices for the gauge. Because of (4.la), :j is obviously orthogonal to v j  : 

Although this orthogonality is a formal advantage, the choice of gauge made in 

writing (4.6) has the intuitive advantage that i t  lends itself to an explanation of 

the physical significance of a’, or more particularly, of the term ( d c )  a’ that 

appears in the expression for the generalized canonical momentum ’bj that is 

given in (1.3a). 



. 

Intuitive Interpretation of Generalized Canonical Momentum 

This intuitive interpretation is based on an identification of c aj 3 with the 

heat reservoir temperature 4-vector T i ,  which is suggested by a comparison 

of (4.5) with (4.3). Thus we assert  that Ti is defined by the relation 

Because TA = T i  (1 ,  v,/c) where T:, the time-like component of Ti, is the 

reservoir temperature as seen in the observer's frame, and vR is the reservoir 

3-velocity, it is possible to write (4.9a) in the following form: 

Ti = a3 /2  t; (4.9b) 

T ; v d c 2  3 -03. (4.9c) 

Whether or not the heat reservoir specified by T i  may actually be identified 

with whatever physically real reservoir that may happen to coexist in space with 

the fluid (but not interact with it for the case of adiabatic flow) depends on whether 

or  not the temperature 4-vector of this real  reservoir can be expressed as the 

gradient of a scalar. (Such a reservoir will henceforth be called a scalar reservoir.) 

A restriction of this kind can be expected to exclude many physically realizable 

reservoirs. Thus the intuitive argument given below, which is based on the identi- 

fication made in (4.9), has physical significance only for this rather narrow class 

of scalar reservoirs. 
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or  

Using (Ll),  (4.6), and (4.9) in (1.3), we find 

bJ = p ~ J  ( 4 ~ ) ~ j  - (m/c) s T k  

(4. loa) 

(4. lob) 

Note that by contracting (4.10a) with v j ,  we have 

where 6' = v j  bJ/c and io = v j  A1 / c  a re  respectively the time-like components 

of bj and AJ as seen in the fluid rest-frame. 

Thermodynamics is represented in (4.11) by the specific Gibbs function 

g = h -  ST. From the intuitive point of view, this is not a surprising result. 

Each small sample of fluid, because i t  is constrained to have the same pressure 

and temperature as the surrounding fluid, seeks a thermodynamic equilibrium 

characterized by the constraint that virtual displacements from equilibrium 

must produce no change in either pressure or temperature. But the appropriate 

thermodynamic potential function in such a case is the Gibbs function. Thus it 

is not surprising that in  (4.11), which gives the total rest-energy of a small 



I c 

sample of the fluid (on a per-particle basis), the thermodynamic energy should 

be represented by the Gibbs function. 

It is possible to use the heat reservoir concept to give an alternative ex- 

planation of the fact that i t  is the Gibbs function that plays the role of thermo- 

dynamic potential. For simplicity, we shaii first consider the case f m  which 

vR = v , and shall work in the common rest-frame of the fluid and reservoir. 

We first note that the specific enthalpy h, often called the heat content of 

the gas, is just the quantity of heat that would have to be injected into a sample 

of unit mass of the fluid in order to expand it against the pressure P of the sur- 

rounding fluid (which, assuming the sample to be very small, would remain con- 

stant during the expansion) while bringing i ts  temperature from absolute zero up 

to the temperature T of the surrounding fluid. This is obvious from the relation 

h = u + P U where u and U a re  respectively the internal energy and volume of 
0 0 

unit mass of the fluid. Of the total heat energy h injected into the sample of 

fluid, the amount PU is converted into the mechanical work necessary to push 
0 

back the surrounding fluid as the sample of unit mass is expanded from zero 

volume to its final volume U, and the amount u remains in the sample as its 
0 

internal energy. The energy u obviously resides within the fluid sample. The 

work P U, however, was performed on the fluid surrounding the sample, and so 
0 

is a potential energy that is stored outside of the sample. Because, however, 

the heat energy h was injected into the space occupied by the sample in expand- 

ing i t  to i ts  final volume U, ana could iii pi-iaeipk be e x t r ~ c t e d  from this region 
0 

of space by reversing the process, it is legitimate to associate the energy h 

with the region of space occupied by the fluid sample. But now we recall that, 
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from the point of view of the heat reservoir model, this region of space is occu- 

pied by,both the fluid and the reservoir, which are regarded as separate systems. 

The question thus arises as to how much of the energy h should be associated 

with the fluid, and how much should be assigned to the reservoir. It is easy to 

see that this latter energy is just s T (per unit mass of the fluid). The reason 

for this is that, i f  an external reservoir at absolute zero of temperature were 

available, a Carnot engine could extract the energy s T from the fluid reservoir. 

Thus the energy to be associated with the fluid is h - ST, which is just the Gibbs 

function g. It is to be expected that, in a dynamical theory concentrating on the 

- fluid, rather than on the heat reservoir associated with it, the thermodynamical 

energy is represented by the fluid energy g = h - s T rather than by the total 

energy h. The relation (4.11) confirms this expectation. 

This argument is easily generalized to the case for which vR # v .  In this 

case, in the fluid rest-frame we may still associate the energy h with the region 

occupied by unit rest-mass of the fluid. In the observer's frame, however, this 

energy becomes T h ,  and necessarily associated with it is the momentum (rh/c2)v.  

Thus we associate the energy-momentum 4-vector (h/c2) vj = [ ( rh /c ) ,  (rh/c2) V I  

with the volume occupied by unit rest-mass of the fluid. 

Next, referring to (4.10) of I, we note that, i f  an external reservoir at abso- 

lute zero of temperature were available, a Carnot engine could extract from the 

fluid reservoir (per unit rest-mass of fluid) an amount of energy.and momentum 

given by the 4-vector (s Tk/c)  = [ ( s  T i / c ) ,  (s T0/c2) vR I , where we have used 

the fact that T i  = Ti (1, vR/c  ). Thus the energy-momentum to be associated 

with the fluid above, on a per-particle basis is m [ (h/c2) VJ - s TA/c]. This is 3 - 
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just the expression that in (4. loa) represents the thermodynamical contribution 

to the generalized canonical momentum ’b’ . 

Finally, it should be noted that we could have inserted 5’ = C a a J S  rather 

than aJ = - c  s a j 3  into (1.3), in which case, instead of (4.10a), we would have 

arrived at the following expression for the generalized canonical momentum5 : 

Because a1 and zj differ only by a choice of gauge, which can have no physical 

significance, whether we use bj or i.”’ in the overall formalism can lead to no 

physically observable differences. Because, as indicated in (4.8), 21 is orthog- 

onal to v. , it turns out that $ has certain formal advantages over bj. The 

latter, however, has the intuitive advantage that it lends itself to the simple 

physical interpretation discussed above. 

“ j  

1 

Hamilton- Jacobi Equation 

The generalized Hamilton-Jacobi equation was given in (2.8) in terms of the 

fluid 4-potential UJ and the corresponding Characteristic Function S , and also in 

(2.13) in terms of 2’ and the corresponding S. The 4-vectors uj and zj dif- 

fered only in choice of gauge. In the case of zj, the gauge (the space-likegauge) 

was chosen so that the orthogonality condition vj  ?iJ = 0 was fulfilled. As stated 

in  (2.12), a necessary consequence of this choice is the fact that the norm of ?ZJ 

is always negative, i.e. z.  :j < 0. Ln̂  the case of adiabatic flow, it is evident 

from (2.4), (4.6), (4.7), and (3.11) that UJ and ?iJ may be written as follows: 

% 

J -  

(m/c)aj = - m s  a j  3 + M a ’  4 ;  (4.13a) 
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(m/c)?h = m 3 aj s - +a1 M .  (4.13b) 

Obviously, these two forms of the fluid 4-potential differ only by the gradient of 

the scalar function ( m s  3 - M 4).  Because of (3.9) and (4.la) it follows that 21 

satisfies the orthogonality condition vj %j = 0 .  The form of the fluid 4-potential 

given in (4.13a) is the sum of the expressions for aj and bJ that we have used 

for intuitive purposes. The form ?iJ given in (4.13b), however, has certain 

formal advantages arising from the orthogonality of ‘2;j and vj  . Moreover, it 

has the advantage that it exhibits more explicitly than d the fact that if  s and 

M become everywhere constant, i.e. if aJ s = 3j M = 0 ,  then the fluid 4-potential 

drops out of the picture. (For this case $ j  vanishes, whereas a’ becomes the 

gradient of a scalar.) For these reasons we shall restrict  ourselves to ‘2;’ and 

the corresponding Characteristic Function s. 
Using (4.13b) in (2.13), we see that the Hamilton-Jacobi equation for adia- 

batic flow becomes 

. 
( a j ~ t q A j / ~ ) ( a J ~ t q A j / c ) = ( p c ) 2  t ( m 3 a j s - 4 a j M ) ( m 3 a j s - 4 a J M ) .  (4.14) 

Because of the fact that zj z j  5 0, the effect of nonuniformity in s and M is 

always to diminish the right side of (4.14). 

We now augment (4.14) with the equations of motion of 3, S ,  4 ,  and M ,  and 

the continuity equation (1.9), which is the equation of motion of p :  

d a / d r  = T ;  

d s / d r  = 0 ;  

(4.15) 

(4.16) 



. 

(4.17) 

(4.18) 

(4.19) 

The 4-velocity ~j which appears explicitly in (4.19) and implicitly in the time 

differentiation operator d/dT = V I  a 
j 

is given by (2.3a): 

We regard G (which appears i n p )  and A1 as given space-time functions. If the 

thermodynamic equation of state of the fluid is given, then h (which appears in p )  

and T (which appears in (4.15)) are  known functions of p and S .  (Knowing this 

functional dependence of T, we may regard (4.15) as the fluid equation of state in 

terms of 3.) Thus we have expressed the problem in terms of the six scalars 

s, 3 , 
w , M, + , and p which are determined by the six scalar equations (4.14)-(4.19). 

This could be called the scalar formulation of the dynamical problem to distin- 

guish i t  from the usual formulation based on the 4-vector Euler equation. 

The remark that, once the fluid equation of state is known, h and T may be 

regarded as known functions of p and s can be illustrated by the case of a per- 

fect gas. In this case 

(4.2 la) 

(4.2i'uj 

where K is an arbitrary constant, cp is the constant-pressure specific heat, and 
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y = c /cv is the ratio of constant-pressure and constant-volume specific heats. 

Using (4.21b) and (4.19), it is easily shown-that for adiabatic flow ofaperfectgas 

(4.15) may be replaced by the following equation of motion for 3 ,  which may also 

be regarded as the fluid equation of state in terms of 3:  

P 

( I sent ropi c 
Pot en t ial 

~ Flow) 

(Perfect Gas)  d 2 3 / d 7 2  t [ ( y -  1) aj  vj] d 3 / d 7  = 0. (4.22) 

Three important special cases should be noted. The first of these is 

isentropic flow which arises if aj s = 0. In this case s drops completely out of 

the formalism. The second case is potential flow which, as noted in Section 111, 

ar ises  if  either M or C#I becomes constant, or if  either can be expressed as a 

function of the other. In this case both M and C#I may be dropped from the for- 

malism. The third special case, isentropic potential flow is simply the simul- 

taneous fulfillment of the above two conditions. In this case the six unknowns of 

the problem reduce to the three unknowns 2, 3,  and p.  Because 3 appears only 

in h,  it can be replaced by h , so that the three unknowns could be taken to be 2, 
h, and p . For a perfect gas, the system of equations for isentropic potential flow 

becomes 

( c a .  % t qAj) ( ~ 2 1 %  t q A J )  = (mc2 t m G  t rnh)2 ; (4.23a) 

(4.23b) 

J 

dp1d.r = - p a j  V I ;  

(Perfect gas) d h / d ~  = - (y - 1) h a j  v j ;  (4.23 c) 

where 

V ~ / C  = - ( c  21 2 t qAj)/(mc2 t rnG t mh). (4.23d) 
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Finally, it should be noted that, although in the system of equations (4.14)- 

(4.19) we regard p as one of the independent variables, it is in fact possible to 
% 

regard only the five variables S , 3 ,  s , 4 ,  and M as constituting the complete set 

of independent variables. From this point of view, the two independent thermo- 

dynamic variables a re  taken to be 3 and s, and then h and T are regardedas hawn 

functions of these (assuming that the thermodynamic properties of the fluid are 

completely known). The thermodynamic equation of state in terms of 3 is given 

by (4.15), where T is regarded as a known function of 3 and S .  This equation 

would then involve the thermodynamic variables 3 and S ,  but not p . (The fact 

that this equation of state involves only two thermodynamic variables is a con- 

sequence of the fact that the flow is constrained to be adiabatic.) From (4.22), 

we see  in fact that for a perfect gas i t  does not even involve s (except for the 

implicit dependence involved in vJ that is given by (4.20)). Once the problem 

has been solved and S , 3, s , 4, and M a r e  known space-time functions, p can be 

found from (4.19). 

-d 

V. FOUR-RESERVOIR MODEL OF NONADIABATIC FLOW 

In the case of nonadiabatic flow, all entropy-dependent effects (including the 

effects of and 

represented by the thermal 4-potential aj whose dynamical role is analogous to 

that of the electromagnetic 4-potential. The "field equation'' for .j was given 

in (1.4), and may be wriiieil 

which a re  always associated with entropy generation) a r e  
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. 

where from (4.2) and (4.3) 

vj  7rJ = m T s  (5.2a) 

and from (4.3) of I1 and (5.4) of I 

v .  771 = 0. (5.2b) 
1 

The 4-vectors 7 ~ j  and qj a re  regarded as known functions of p ,  VJ , s, and T 

that satisfy the conditions (5.2). The component equations of (5.1) are the four 

equations whose solution yields the space-time dependence of the four compo- 

nents of aj . 

In addition to this 4-vector treatment of the entropy-dependent forces in the 

case of nonadiabatic flow, it would be desirable to have a scalar formulation that 

was a generalization of the one given in the preceding section for the case of 

adiabatic flow. We arrive a t  such a generalization by assigning to aj the func- 

tional form 

4 

where 

and 

2 ' ( N )  = 
N= 1 

(5.4a) 

(5.4b) 

where 3(N) = d3(N,/d7. The form assigned to aj in (5.3) is an obvious gener- 

alization of the form given in (4.6) in the case of adiabatic flow. The conditions 

given in (5.4) represent four constraints on the eight variables s and 3(N) (N 1 



so  the right side of (5.3) has four degrees of freedom which suffice to express any 

arbitrarily given aj. We need four more equations in addition to (5.4) in order to 

arrive at a complete specification of the eight variables. The additional four equa- 

tions are supplied by the following 4-vector equation: 

In order to demonstrate that fulfillment of the conditions (5.4) and (5.5) does in- 

deed guarantee that (5.3) satisfies (5.1), we first note that by contracting (5.5) 

with vj  and using (5.2) and (5.4), we arrive at  the following result: 

3(N) E d 3  (N) /dT = T;  N = 1,2, 3,4. (5.6) 

It is now easily verified that when (5.4) and (5.5) (which implies (5.6)) a r e  satis- 

fied, then (5.3) does indeed satisfy (5.1). Thus we have replaced the four variables 

aj and the corresponding four equations (5.1) with the eight scalar functions s 

and 3(N) and the corresponding eight equations (5.4) and (5.5). 
(N) 

In terms of number of variables, this replacement is obviously not advan- 

tageous. The fact that the new variables are scalars rather than the components 

of a 4-vector can, however, be an important advantage. Moreover, it is possible 

to give the scalar formulation a simple physical interpretation in terms 0f.a 

thermal interaction of the fluid with four separate heat reservoirs. The basis of 

this interpretation is the fact that, because of (5.6), it is possible to identify each 

of the four gaiiieiiis c2J  2((N) with the temperature 4-vector T i N )  of a scalar heat 

reservoir in thermal interaction with the fluid: 
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This is an obvious generalization of (4.9a). The 4-vector equations (5.3) and 

(5.5) may now be written as follows: 

'(N) ';N)' (m/c>aj = - m 
N - 1  

2 '(N) ';N) = , j  + 771 

There is a simple physical interpretation of (5.9). Referring to (4.22) of 1,we 

note that m i(N) T iN) may be interpreted as the energy-momentum (per particle) 

delivered by the Nth heat reservoir per unit time to the fluid, and i(N) is that 

part of 6 ,  the total fluid entropy increase per unit time, that results from the 

absorption of heat from the Nth reservoir. Note that it is even possible to ac- 

count for a purely space-like viscous force on the right side of (5.9) (i.e. .rrJ = 0 )  

in terms of this four-reservoir model. In such a case, for example, we might 

have two reservoirs moving in opposite directions, one absorbing and the other 

rejecting heat in such a way that no net heat energy is delivered to the fluid (in 

its own rest-frame), but a net momentum per unit time (i.e. force) would be 

delivered. This force would be the viscous force. In such a case we would have 

= 0 ,  so the fluid flow would actually (1) + + Z )  
k 

be adiabatic even though a viscous force was present. (Adiabatic flow of a viscid 

> o , i(,) < 0 ,  and 8 = i 
( 1 )  

fluid is ,  of course, a mathematical idealization in  that physically viscosity is 

always accompanied by entropy generation.) 

Substituting (5.8) into (1.3a), we arrive at the following expression for the 

generalized canonical momentum in the case of nonadiabatic flow: 
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faj = p v j  t (q/c) A' - m 
' (N)  ' i N ) .  

(5.10) 

Referring to the interpretive discussion given in the preceding section, we note 

that, ms(,) T i N )  may be interpreted as the energy-momentum (per particle) 

contained in the N t h  reservoir, which could in principle be converted into 

mechanical form by a Carnot engine operating between the Nth reservoir and 

a cold reservoir at absolute zero of temperature. By subtracting from the total 

which should be asso- energy-momentum pvj  + ( q / c )  Aj that part, m 2 s 

ciated with the four reservoirs,  we a r e  left with the part f ~ j  , which should be 

associated with the fluid. 

( N )  i N Y  

Although the above formulation of the nonadiabatic flow problem lends itself 

most readily to physical interpretation, there exists an alternative formulation 

that has certain formal advantages. We arrive a t  this alternative by writing 3(N) 

as 

where 

and 

(5.11a) 

(5.11b) 

(5 .11~)  

where N = 1, 2, 3 ,  4. The fulfillment'of these conditions will automatically guar- 

antee the fulfillment of (5.4b) and (5.6). Substituting (5.11) intc (5.3) and using 

(5.4a), we may write 

,j = - c  (5.12) 
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I where 

(5.13) 

The conditions on 3 and F(,) that correspond to (5.11) a re  

3 = T :  (5.14a) 

(5.14b) 

These a re  four conditions on the eight variables s ,  3, F 

The remaining necessary four equations a re  provided by the following 4-vector 

equation: 

anc s .  (N = 1,2,3). 
( N )  ' ( N )  

(5.15) 

It is easily verified that if (5.14) and (5.15) a r e  satisfied then (5.12) satisfies 

(5.1). 

The condition (5.14a) specifies 3 only to within an arbitrary additive func- 

tion that is a constant of motion. We could use this freedom to specify 3 so that 

m d a j3 is the closest possible approximation to T J  t 7 j . Then we would interpret 

the left side of (5.15) as expressing that part  of T J  + ,IJ that is not describable 

in terms of a single scalar reservoir model. The formal advantage of (5.12) 

over (5.3) is that T J  t 7'  is described in terms of three constants of motion 

and corresponding entropy contributions s ( N  = 1,2 ,3)  upon which no 

constraint of the kind given in (5.4a) is imposed. Moreover, the fluid equation 

of state can be written simply in  terms of e, 3, and s alone, making i t  unneces- 

sary to use all four entropy contributions s 

formulation based on (5.3). 

F(N 1 ( N )  

as would be the case for  the 
( N )  
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VI. CONCLUSIONS 

U s e  of the generalized Hamilton-Jacobi equation for a charged fluid in the 

presence of given electromagnetic and gravitational fields allows the problem 

to be formulated in terms of a set of independent dynamical and thermodynamical 

variables that a re  all scalars. Such a scalar formulation is possible even when 

viscosity and heat injection into the fluid a re  taken into account. 
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